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Disclaimer: 

This talk will be useless. 

I am not a cryptographer. 

Some things are wrong. 



Elliptic curves 

 

y2 = x3 + a·x + b 

 

…and a prime number p. 

choice! 



points ≈numbers 



P Q 

P+Q 

“point addition” 



P 

P+P 

“point doubling” 

2·P 

2P+P 3·P 

“(integer) multiplication” 

6·P 

4·P 

5·P 



So: 

We can “add” points to each other. 

We can “multiply” points by an integer. 

Nice: P + Q = Q + P 

  3·P + P = 2·P + 2·P = 4·P 

  5·(7·P) = 7·(5·P) 
  etc. 

The points on a curve form an Abelian 
Group (very exciting!). 



Multiplication is very fast 

To go from a point P to 100·P: 

P → 2·P 

2·P → 3·P 

3·P → 6·P 

6·P → 12·P 

12·P → 24·P 

24·P → 25·P 

25·P → 50·P 

50·P → 100·P 

Only eight steps! 



“Division” is very slow 

Given points P and Q, where Q=n·P, 
the best way to find the number n is to 
try P, 2·P, 3·P, etc. That is very slow. 

The Discrete Logarithm Problem for 
elliptic curves. 



ECDH (Elliptic Curve Diffie Hellman) 

The challenge:  Alice and Bob want to 
agree on a secret key over a public 
channel. 

For example: Alice is a web server, Bob 
a browser and they want to exchange 
a key to encrypt a TLS session. 



ECDH (Elliptic Curve Diffie Hellman) 

Alice and Bob have agreed on an 
elliptic curve and a “base point” P on 
the curve. 

Alice chooses secret large random 
number a. 

 Bob chooses secret large random 
number b. 

 



ECDH (Elliptic Curve Diffie Hellman) 

Alice computes a·P (a times the point 
P) and shares the answer with Bob. 

Bob computes b·P and shares this too. 

Alice computes a·(b·P) (a times the 
point Bob gave her). 

Bob computes b·(a·P).  

Secret key: a·(b·P) = b·(a·P). 



Wireshark (client to server) 

“11 cipher suites you didn’t know I 
supported” 
 



Wireshark (client to server) 

“These are my three favourite 
curves.” 



Wireshark (server to client) 

“OK, let’s go for 
TLS_ECDHE_RSA_WITH_AES_128_CGM_SHA256 .” 



Wireshark (server to client) 

“And curve NIST P-256. And this is 
my point.” 



Wireshark (client to server) 

“Cheers – here’s mine!” 



What could possibly go wrong? 

What if there is a ‘loop’? 

If 1001·P = P, then there are only 1000 
possible values for n·P, no matter how 
large n is! 

Loops can be avoided. Other (known 
and unknown!) weaknesses remain 
possible. 

 



Are we using ‘weak’ curves? 

NIST P-256: 

 

y2 = x3 - 3x + 
4105836372515214212932612978004
7268409114441015993725554835256
314039467401291  

WHAT??? 



Random number generators 

random seed 

    output        



Random number generators 

Discrete Logarithm Problem: 

 n → n·P 

gives “random” points/numbers. 

 

 
n0 n1 n2 

n0·P n1·P n2·P 

n1 n2 

n1·P 



Random number generators 

s0 s1 s2 

Given: elliptic curve with two points P 
and Q. 

s0·P s1·P s2·P 

s1·Q s2·Q 
32-byte seed 

30 bytes 30 bytes 

Note: ideas from this slide and the next are borrowed from Bernstein, Heninger and 
Lange (NCSC ‘14). 



Random number generators 

s0 s1 s2 

Fact: P=d·Q for some (large) number d. 

s0·P s1·P s2·P 

s1·Q s2·Q 
32-byte seed 

30 bytes 30 bytes 

216 possibilities 
r1 

d·r1 

s1·P = s1(d·Q) 

= d·(s1·Q) 

= d·r1 



So who, if anyone, knows d? 

“Dual_EC_DRBG” 



Conclusion 

Elliptic curve cryptography is a good 
idea because we can do with much 
smaller keys. 

256-bit ECC ≈ 3072-bit RSA. 

 

 
Elliptic curve crypto uses complicated 
maths. That is its biggest weakness. 



Thank you! 
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