
Elliptic Curve Cryptography
for those who are afraid of maths

Martijn Grooten, Virus Bulletin

@martijn_grooten

BSides London, 3 June 2015

Disclaimer:

This talk will be useless.

I am not a cryptographer.

Some things are wrong.

Elliptic curves

y2 = x3 + a·x + b

…and a prime number p.

choice!

points ≈numbers

P Q

P+Q

“point addition”

P

P+P

“point doubling”

2·P

2P+P 3·P

“(integer) multiplication”

6·P

4·P

5·P

So:

We can “add” points to each other.

We can “multiply” points by an integer.

Nice: P + Q = Q + P

 3·P + P = 2·P + 2·P = 4·P

 5·(7·P) = 7·(5·P)
 etc.

The points on a curve form an Abelian
Group (very exciting!).

Multiplication is very fast

To go from a point P to 100·P:

P → 2·P

2·P → 3·P

3·P → 6·P

6·P → 12·P

12·P → 24·P

24·P → 25·P

25·P → 50·P

50·P → 100·P

Only eight steps!

“Division” is very slow

Given points P and Q, where Q=n·P,
the best way to find the number n is to
try P, 2·P, 3·P, etc. That is very slow.

The Discrete Logarithm Problem for
elliptic curves.

ECDH (Elliptic Curve Diffie Hellman)

The challenge: Alice and Bob want to
agree on a secret key over a public
channel.

For example: Alice is a web server, Bob
a browser and they want to exchange
a key to encrypt a TLS session.

ECDH (Elliptic Curve Diffie Hellman)

Alice and Bob have agreed on an
elliptic curve and a “base point” P on
the curve.

Alice chooses secret large random
number a.

 Bob chooses secret large random
number b.

ECDH (Elliptic Curve Diffie Hellman)

Alice computes a·P (a times the point
P) and shares the answer with Bob.

Bob computes b·P and shares this too.

Alice computes a·(b·P) (a times the
point Bob gave her).

Bob computes b·(a·P).

Secret key: a·(b·P) = b·(a·P).

Wireshark (client to server)

“11 cipher suites you didn’t know I
supported”

Wireshark (client to server)

“These are my three favourite
curves.”

Wireshark (server to client)

“OK, let’s go for
TLS_ECDHE_RSA_WITH_AES_128_CGM_SHA256 .”

Wireshark (server to client)

“And curve NIST P-256. And this is
my point.”

Wireshark (client to server)

“Cheers – here’s mine!”

What could possibly go wrong?

What if there is a ‘loop’?

If 1001·P = P, then there are only 1000
possible values for n·P, no matter how
large n is!

Loops can be avoided. Other (known
and unknown!) weaknesses remain
possible.

Are we using ‘weak’ curves?

NIST P-256:

y2 = x3 - 3x +
4105836372515214212932612978004
7268409114441015993725554835256
314039467401291

WHAT???

Random number generators

random seed

 output

Random number generators

Discrete Logarithm Problem:

 n → n·P

gives “random” points/numbers.

n0 n1 n2

n0·P n1·P n2·P

n1 n2

n1·P

Random number generators

s0 s1 s2

Given: elliptic curve with two points P
and Q.

s0·P s1·P s2·P

s1·Q s2·Q
32-byte seed

30 bytes 30 bytes

Note: ideas from this slide and the next are borrowed from Bernstein, Heninger and
Lange (NCSC ‘14).

Random number generators

s0 s1 s2

Fact: P=d·Q for some (large) number d.

s0·P s1·P s2·P

s1·Q s2·Q
32-byte seed

30 bytes 30 bytes

216 possibilities
r1

d·r1

s1·P = s1(d·Q)

= d·(s1·Q)

= d·r1

So who, if anyone, knows d?

“Dual_EC_DRBG”

Conclusion

Elliptic curve cryptography is a good
idea because we can do with much
smaller keys.

256-bit ECC ≈ 3072-bit RSA.

Elliptic curve crypto uses complicated
maths. That is its biggest weakness.

Thank you!

@martijn_grooten

martijn.grooten@virusbtn.com

www.virusbtn.com

PS VB2015, Prague 30 Sep-2 Oct

