Elliptic Curve Cryptography for those who are afraid of maths

Martijn Grooten, Virus Bulletin @martijn_grooten BSides London, 3 June 2015 Undergraduate Texts in Mathematics

Joseph H. Silverman John Tate

Rational Points on Elliptic Curves

Disclaimer:

This talk will be useless.

I am not a cryptographer.

Some things are wrong.

Elliptic curves

$$y^2 = x^3 + a \cdot x + b$$

...and a prime number *p*.

choice!

We can "add" points to each other.

We can "multiply" points by an integer. Nice: P + Q = Q + P $3 \cdot P + P = 2 \cdot P + 2 \cdot P = 4 \cdot P$

$$5\cdot(7\cdot P)=7\cdot(5\cdot P)$$

etc.

The points on a curve form an *Abelian Group* (very exciting!).

Multiplication is very fast

To go from a point P to $100 \cdot P$: $P \rightarrow 2 \cdot P$ $12 \cdot P \rightarrow 24 \cdot P$ $2 \cdot P \rightarrow 3 \cdot P$ $24 \cdot P \rightarrow 25 \cdot P$ $3 \cdot P \rightarrow 6 \cdot P$ $25 \cdot P \rightarrow 50 \cdot P$ $6 \cdot P \rightarrow 12 \cdot P$ $50 \cdot P \rightarrow 100 \cdot P$

Only eight steps!

"Division" is very slow

Given points *P* and *Q*, where $Q=n\cdot P$, the best way to find the number *n* is to try *P*, $2\cdot P$, $3\cdot P$, etc. That is very slow.

The *Discrete Logarithm Problem* for elliptic curves.

ECDH (Elliptic Curve Diffie Hellman)

The challenge: Alice and Bob want to agree on a secret key over a public channel.

For example: Alice is a web server, Bob a browser and they want to exchange a key to encrypt a TLS session.

ECDH (Elliptic Curve Diffie Hellman)

Alice and Bob have agreed on an elliptic curve and a "base point" *P* on the curve.

Alice chooses secret large random number *a*.

Bob chooses secret large random number *b*.

ECDH (Elliptic Curve Diffie Hellman)

- Alice computes $a \cdot P$ (a times the point P) and shares the answer with Bob.
- Bob computes $b \cdot P$ and shares this too.
- Alice computes $a \cdot (b \cdot P)$ (a times the point Bob gave her).
- Bob computes $b \cdot (a \cdot P)$.
- Secret key: $a \cdot (b \cdot P) = b \cdot (a \cdot P)$.

Wireshark (client to server)

Session ID Length: O

Cipher Suites Length: 22

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc02b) Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xc00a) Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0xc009) Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc014) Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x0033) Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x0039) Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x0039) Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA (0x0035) Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x000a) Compression Methods Length: 1 > Compression Methods (1 method)

"11 cipher suites you didn't know I supported"

Wireshark (client to server)

) 00 18 4d 67 16 04 0c ee e6 d2 a1 1b 08 00 45 00

"These are my three favourite curves."

Wireshark (server to client)

```
>> Random
Session ID Length: 0
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)
Compression Method: null (0)
Extensions Length: 21
Type: server_name
Type: server_name
Type: server_name (0x0000)
Length: 0
```

"OK, let's go for TLS ECDHE RSA WITH AES 128 CGM SHA256."

Wireshark (server to client)

"And curve NIST P-256. And this is my point."

Wireshark (client to server)

▼ EC Diffie-Hellman Client Params

Pubkey Length: 65

pubkey: 04b6d623a732967c66508cc3d7760bd160269f7e2a34cc8a...

TLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec Content Type: Change Cipher Spec (20) Version: TLS 1.2 (0x0303)

Length: 1

Change Cipher Spec Message

000	00	18	4d	67	16	04	0c	ee	e6	d2	al	1b	08	00	45	00	Mg	E.	
010	00	b2	31	08	40	00	40	06	c3	05	c0	a8	00	07	5e	17	1.@.@.	^.	
120	27	72	aЗ	79	01	bb	f8	ce	68	32	af	cf	a5	10	80	18	'r.y	h2	
)30	05	ad	2d	d4	00	00	01	01	08	0a	14	a8	56	91	e4	b5		V	
)40	f6	df	16	03	03	00	46	10	00	00	42	41	04	b6	d6	23	F.	BA#	
)50	a7	32	96	7c	66	50	8c	c3	d7	76	Ob	d1	60	26	9f	7e	.2. fP	.v &.~	
060	2a	34	cc	8a	17	9c	55	2c	94	37	94	64	do	b2	Ob	dc	*4U,	.7.d	
070	aO	8d	ce	40	6b	d9	a0	af	42	ae	15	68	86	0a	1d	a8	@k	в	
080	a2	d7	f7	28	Зс	98	8b	d2	4d	55	64	51	30	14	03	03	(<	MUdqo	
90	00	01	01	16	03	03	00	28	00	00	00	00	00	00	00	00	(
)aO	17	85	68	35	24	dЗ	9b	15	0a	9b	2c	el	bf	lc	dЗ	2d	h5\$		
bo	ed	fl	10	99	97	b8	Зf	32	22	1b	dc	69	13	al	ae	25	?2	"i%	

"Cheers - here's mine!"

What could possibly go wrong?

What if there is a 'loop'?

If $1001 \cdot P = P$, then there are only 1000 possible values for $n \cdot P$, **no matter how** large *n* is!

Loops can be avoided. Other (known and unknown!) weaknesses remain possible.

$y^2 = x^3 - 3x +$ 4105836372515214212932612978004 7268409114441015993725554835256 314039467401291 WHAT???

NIST P-256:

Are we using 'weak' curves?

Random number generators

Random number generators

Discrete Logarithm Problem:

$$n \rightarrow n \cdot P$$

gives "random" points/numbers.

Random number generators

Given: elliptic curve with two points *P* and *Q*.

Note: ideas from this slide and the next are borrowed from Bernstein, Heninger and Lange (NCSC '14).

Random number generators Fact: $P=d\cdot Q$ for some (large) number d.

So who, if anyone, knows d?

NIST SP 800-90A

January 2012

Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and appreciates contributions by Mike Boyle and Mary Baish from NSA for assistance in the development of this Recommendation. NIST also thanks the many contributions by the public and private sectors.

"Dual_EC_DRBG"

Conclusion

Elliptic curve cryptography is a good idea because we can do with much smaller keys.

256-bit ECC ≈ 3072-bit RSA.

Elliptic curve crypto uses complicated maths. That is its biggest weakness.

Thank you!

@martijn_grooten martijn.grooten@virusbtn.com www.virusbtn.com

PS VB2015, Prague 30 Sep-2 Oct